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Summary
In this paper, an event-triggered adaptive tracking control strategy is proposed
for strict-feedback stochastic nonlinear systems with predetermined finite-time
performance. Firstly, a finite-time performance function (FTPF) is introduced
to describe the predetermined tracking performance. With the help of the error
transformation technique, the original constrained tracking error is transformed
into an equivalent unconstrained variable. Then, the unknown nonlinear func-
tions are approximated by using the multi-dimensional Taylor networks (MTNs)
in the backstepping design process. Meanwhile, an event-triggered mechanism
with a relative threshold is introduced to reduce the communication burden
between actuators and controllers. Furthermore, the proposed control strategy
can ensure that all signals of the closed-loop system are bounded in probability
and the tracking error is within a predefined range in a finite time. In the end,
the effectiveness of the proposed control strategy is verified by two simulation
examples.
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1 INTRODUCTION

It is well known that many practical systems are often unstable due to the presence of stochastic perturbations. There-
fore, the control design of stochastic nonlinear systems has become a hot research topic, and many control methods have
been proposed, such as adaptive control,1–3 sliding mode control,4 and robust control.5 Specifically, adaptive control has
become an effective method to solve the control problems of stochastic nonlinear systems. Meanwhile, by combining the
approximation-based intelligent control method with the traditional adaptive backstepping method, many meaningful
research results have been achieved, such as neural network (NN) control,6–9 fuzzy control,10,11 and multi-dimensional
Taylor network (MTN) control.12,13 Specially, since MTN has the advantages of simple structure, small computational
effort and fast function approximation,14 MTN-based control method has gained more and more attention and been
successfully applied to different types of stochastic nonlinear systems, such as stochastic nonlinear systems with input
constraints,15–17 stochastic nonlinear systems with multiple faults,13 and large-scale stochastic nonlinear systems.18

However, most of the above results focused on the control performance of the system while neglected the limitations of
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control resources. Recently, a growing attention has been paid on event-triggered control (ETC), which has important
theoretical significance and practical application value.

In recent years, event-triggered control has been rapidly developed because of its advantages such as low economic
cost, high flexibility, and good operability. In view of the limited network resources, it is crucial to reduce the utiliza-
tion of communication resources while ensuring the control performance. For this reason, the authors in Reference 19
first proposed the event-triggered mechanism for first-order stochastic systems, which can reduce redundant transmis-
sions by discrete signal transmission. Since then, ETC-based approach not only has achieved many valuable results in
nonlinear systems,20–22 but also has been successfully extended to stochastic nonlinear systems23–27 and stochastic non-
linear multi-agent systems.28 However, although ETC has achieved fruitful results, most of the above results focused
only on achieving tracking effects without considering the predetermined finite-time performance of the controlled
system.

In practical systems, the tracking error usually needs to meet performance specifications, such as fast convergence
and small steady-state error, to ensure the control performance of the systems. Many scholars have exerted great effort
in addressing this issue. To improve the convergence speed and robustness of the closed-loop system, the authors in Ref-
erences 29,30 proposed a novel practically predefined-time control scheme for stochastic nonlinear systems, which can
achieve the tracking error converges to a small neighborhood of the origin in the predefined-time sense. To enhance the
tracking performance of the system, prescribed performance control method, which means the tracking error must satisfy
prescribed boundary conditions, has been widely applied to general nonlinear systems31,32 and stochastic nonlinear sys-
tems.33–36 Regrettably, the above prescribed performance control results did not consider the predetermined finite-time
performance problem. As a matter of fact, the control objectives of many demanding practical systems, such as robotic sys-
tems37,38 and flight systems,39,40 are usually desired to be achieved in a finite time. In this context, the authors in Reference
41 proposed the event-triggered control protocol to achieve finite-time consensus for the second-order leader-following
nonlinear multi-agent system. Moreover, the predetermined finite-time performance control has received extensive atten-
tion and led to many valuable results.42–45 However, the problem of event-triggered adaptive tracking control for stochastic
nonlinear systems with predetermined finite-time performance has received little attention, which motivates us to carry
out this work.

Based on the above analysis, the control problem of achieving the predetermined finite-time tracking performance
for strict-feedback stochastic nonlinear systems is considered in this paper. An event-triggered adaptive tracking control
strategy with a relative threshold is proposed by using the adaptive backstepping method and MTN, which can guaran-
tee that all signals of the closed-loop system are bounded in probability. Compared with the existing results, the novel
contributions of this paper can be summarized as follows:

1. A unified adaptive control framework is proposed to design the event-triggered adaptive tracking controller for
strict-feedback stochastic nonlinear systems with predetermined finite-time performance by integrating MTN-based
approach, adaptive backstepping method and stochastic stability theory. The proposed control strategy ensures that all
the closed-loop signals are bounded in probability and the tracking error converges to a predefined region in a finite
time. Although many event-triggered control strategies have been developed in References 24,27,43, the above results
cannot be directly used to solve predetermined finite-time performance control problems for stochastic nonlinear
systems.

2. Although many meaningful MTN-based results have been proposed for stochastic nonlinear systems,12,13,15 the issues
of predetermined finite-time performance control and ETC were not considered simultaneously. Even though the
predetermined finite-time performance control problem was studied in References 42,44,46, their control objects
were nonlinear systems, which ignored the presence of stochastic disturbances. In addition, the authors in Refer-
ences 33,34 addressed the predetermined performance control problem for stochastic nonlinear systems, while they
did not consider finite-time control or ETC. Therefore, the problem and the system studied in this paper are more
generalized.

3. In order to overcome the difficulties in controller design brought by the constrained tracking error, a coordinate trans-
formation function is introduced, which can transform the constrained tracking error into an equivalent unconstrained
variable. Besides, an event-triggered mechanism with a relative threshold is introduced to reduce the communica-
tion burden between actuators and controllers. Moreover, the control strategy proposed has the advantages of simple
structure, small computation and easy implementation with the aid of MTN.
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2 PRELIMINARY PREPARATION OF PROBLEMS

2.1 Problem formulation

In this paper, consider a class of strict-feedback stochastic nonlinear systems as follows

⎧
⎪
⎨
⎪
⎩

dxi =
(

xi+1 + fi
(

xi
))

dt + gT
i

(
xi

)
d𝜔, i = 1, … ,n − 1

dxn =
(

u + fn
(

xn
))

dt + gT
n
(

xn
)

d𝜔
y = x1

(1)

where x1, x2, … , xn denote the system states and xi = [x1, … , xi]T ∈ Ri, for i = 1, 2, … ,n. u and y represent the control
input and measurement output of the system, respectively. 𝜔 stands for an independent r-dimensional Wiener process.
fi
(

xi
)
∶ Ri → R and gi

(
xi

)
∶ Ri → Rr, i = 1, 2, … ,n represent unknown smooth nonlinear functions satisfying fi(0) = 0

and gi(0) = 0.
For system (1), the work of this paper is to propose an event-triggered adaptive tracking control strategy, which can

achieve the following objectives

1. all the closed-loop signals are bounded on [0,+∞) in probability.
2. the tracking error e1 = y − yd converges to a predefined region in a finite time.

The following Assumption and Lemmas are required for controller design.

Assumption 1 (47). The reference trajectory yd and its time derivatives up to the n-th order are continuous
and bounded.

Lemma 1 (1, Young’s inequality). For any given (x, y) ∈ R2, the following inequality holds

xy ≤ 𝛽
p

p
|x|p + 1

q𝛽q |y|q
, (2)

where 𝛽 > 0, p > 1, q > 1, and (p − 1)(q − 1) = 1.

Lemma 2 (43). For ∀𝜉 > 0 and ∀𝜏 ∈ R, the following inequality holds

0 ≤ |𝜏| − 𝜏 tanh
(
𝜏

𝜉

)

≤ 0.2785𝜉. (3)

2.2 Finite-time performance function

To ensure the tracking error converges to a predefined region in a finite time, the definition of FTPF is introduced as
follows

Definition 1 (43). The continuous function 𝜓(t) is said to be FTPF, if it satisfies the following conditions:

1) 𝜓(t) > 0 and 𝜓̇(t) < 0, which means 𝜓(t) is a strictly monotonically decreasing positive function;
2) there exists a setting time Tc, such that limt→Tc 𝜓(t) = 𝜓Tc , and for ∀t ≥ Tc, 𝜓 = 𝜓Tc , where 𝜓Tc > 0 is a

arbitrarily small positive constant.

In this paper, a FTPF is chosen as

𝜓(t) =

{
−tanh

(
𝜓1 + t

Tc−t

)
+ 𝜓2 + 1, 0 ≤ t < Tc

𝜓2, t ≥ Tc,
(4)

where 𝜓1, 𝜓2, Tc are positive design constants, and tanh(⋅) represents the hyperbolic tangent function.
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4 WANG et al.

Remark 1. It should be emphasized that 𝜓(t) has the property of finite-time convergence, while the regular
performance function proposed in Reference 34 does not have this property. Moreover, it is clear from (4)
that 𝜓(t) is easier to implement due to the mild initial condition 𝜓(0) = −tanh(𝜓1) + 𝜓2 + 1 > 0 and the
independence of system order n.

The objective (2) can be achieved by limiting the tracking error e1(t) = x1(t) − yd(t) to the interval (−𝜍1𝜓(t), 𝜍2𝜓(t)),
namely

−𝜍1𝜓(t) < e1(t) < 𝜍2𝜓(t), (5)

where 𝜍1 > 0 and 𝜍2 > 0 are positive design constants, and 𝜓(t) is a FTPF described as (4).
According to (4) and (5), it is known that −𝜍1𝜓(0) and 𝜍2𝜓(0) denote the minimum value and the maximum value of

the transient undershoot of the tracking error e1(t), respectively. In addition, Tc represents the time of the tracking error
e1(t) decaying to the steady-state value 𝜓2.

Lemma 3 (42). 𝜓(t), 𝜓̇(t) are continuously differentiable and bounded on [0, +∞), and 𝜓̈(t) is continuous
and bounded on [0, +∞).

2.3 Stability theory preparation

To introduce the definitions and theorems of stochastic nonlinear systems, consider the following general stochastic
system

dx = f (x)dt + g(x)d𝜔, (6)

where x ∈ Rn represents the state vector, and 𝜔 denotes an r-dimensional independent standard Wiener process. f (⋅) ∶
Rn → Rn and g(⋅) ∶ Rn → Rn×r are locally Lipschitz functions satisfying f (0) = 0 and g(0) = 0.

Definition 2 (15). For any given V(x) ∈ C2, LV means the differential operator of V associated with the
stochastic system (6), which is defined in the following form

LV = 𝜕V
𝜕x

f + 1
2

Tr
{

gT 𝜕
2V
𝜕x2 g

}

, (7)

where C2 represents the set of all functions with continuous second-order partial derivative and Tr{⋅}
represents the trace of ⋅.

Lemma 4 (1). Consider the stochastic system (6), if there exists a positive definite, radially unbounded,
twice continuously differentiable Lyapunov function V(x) ∶ Rn → R, and two positive constants a > 0, b > 0,
such that

LV(x) ≤ −aV(x) + b, (8)

then, the system (6) has a unique solution almost surely, and the system is bounded in probability.

2.4 Multi-dimensional Taylor network

In this paper, the unknown nonlinear functions in the controller design process will be treated with MTN. In the previous
works,47–49 the theory related to MTN has been introduced, only the following Lemma is presented.

Lemma 5 (49,50). Suppose𝜑(s) is a continuous nonlinear function defined on a compact setΩ, then for ∀𝜀 > 0,
𝜑(s) can be approximated by 𝜽TPmn(s) as follows

𝜑(s) = 𝜽TPmn(s) + 𝛿(s), (9)
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WANG et al. 5

F I G U R E 1 The topological structure of MTN.

where s = [s1, s2, … , sn]Tand 𝜽 = [𝜃1, … , 𝜃l]T represent the input vector and the weight vector of MTN,
respectively. 𝛿(s) represents the approximation error with |𝛿(s)| ≤ 𝜀. Pmn(s) = [s1, … , sn,s2

1, s1s2, … , s2
n, … ,

sm
1 , s

m−1
1 s2, … , sm

n ]T denotes the middle layer of MTN.

Remark 2. The topological structure of MTN is shown in Figure 1. As a network structure similar to radial
basis function neural network (RBFNN),9 MTN is composed of three layers: input layer, middle layer and
output layer. The major difference between the MTN and RBFNN is the way of processing information of the
middle layer. Unlike RBFNN, polynomials are adopted instead of radial basis functions in the middle layer of
MTN, which can realize the approximation of nonlinear functions with less computation.13,14

3 CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, an event-triggered adaptive MTN controller will be designed for the controlled system (1), which will be
addressed in a step-by-step manner. For ease of representation, fi

(
xi

)
and gi

(
xi

)
, i = 1, 2, … ,n will be abbreviated below

as fi and gi, respectively.
At the start, the following coordinate transformation is defined

zi = xi − 𝛼i−1, i = 2, 3, … ,n (10)

where 𝛼i−1 represents the virtual control signal to be designed later.

3.1 Design of control strategy

Step 1: To convert the constrained tracking error e1(t) into an equivalent unconstrained variable z1, similar to the
methodology of References 42,43, a smooth and strictly increasing transformation function 𝛾(z1) is introduced as follows

𝛾(z1) =
𝜍2ez1 − 𝜍1e−z1

ez1 + e−z1
, (11)

which satisfies

⎧
⎪
⎨
⎪
⎩

−𝜍1 < 𝛾(z1) < 𝜍2

lim
z1→+∞

𝛾(z1) = 𝜍2, lim
z1→−∞

𝛾(z1) = −𝜍1.
(12)

In addition, (11) can be transformed into another form as follows

𝛾(z1) = 𝜍2 −
𝜍1 + 𝜍2

e2z1 + 1
. (13)
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6 WANG et al.

Based on (13), we have

e2z1 = 𝜍1 + 𝛾(z1)
𝜍2 − 𝛾(z1)

. (14)

According to (5), (11), and (12), e1(t) can be expressed as

e1(t) = 𝜓(t)𝛾(z1). (15)

From (14), we can further obtain z1 = 1
2

ln
(
𝜍1+𝛾(z1)
𝜍2−𝛾(z1)

)
, and from (15), we can obtain 𝛾(z1) =

e1(t)
𝜓(t)

. Therefore, the following
equation holds

z1 =
1
2

ln
(
𝜍1 + 𝛾(z1)
𝜍2 − 𝛾(z1)

)

= 1
2

ln
⎛
⎜
⎜
⎝

𝜍1 +
e1(t)
𝜓(t)

𝜍2 −
e1(t)
𝜓(t)

⎞
⎟
⎟
⎠

. (16)

Remark 3. Clearly, the variable z1 is unconstrained. From (16), we can get that ln
(
𝜍1+

e1(t)
𝜓(t)

𝜍2−
e1(t)
𝜓(t)

)

= 0 when z1 → 0,

which implies e1(t) = 1
2
𝜓(t)(𝜍2 − 𝜍1). Therefore, the tracking error e1(t) converges to (−𝜍1𝜓(t), 𝜍2𝜓(t)) when

z1 → 0. In addition, according to (15) and (16), since 𝜓(t) is a strictly monotonically decreasing positive
function, e1(t) can be confined to the following set Δ in a finite time Tc, that is

Δ = {e1(t) ∈ R ∶ |e1(t)| < max(𝜍1, 𝜍2)𝜓2, t ≥ Tc}. (17)

According to (16), one has

ż1 = 𝜁
[

ė1(t) − e1(t)
𝜓̇(t)
𝜓(t)

]

, (18)

where 𝜁 =
[

1
2𝜓(t)

][
1

𝜍1+𝛾(z1) +
1

𝜍2−𝛾(z1)
]
. Obviously, 𝜁 > 0.

From the system model (1) and (18), we have

dz1 = 𝜁
[

x2 + f1 − ẏd − e1(t)
𝜓̇(t)
𝜓(t)

]

dt + 𝜁gT
1 d𝜔. (19)

Consider the first Lyapunov function candidate V1 as follows

V1 =
1
4

z4
1 +

1
2
̃𝜽

T
1Γ−1

1
̃𝜽1, (20)

where 𝜽1 denotes the weight vector of MTN and ̂𝜽1 denotes the estimation of 𝜽1. ̃𝜽1 = 𝜽1 − ̂𝜽1 denotes the parameter error
vector, and Γ1 = ΓT

1 > 0 is a constant matrix.
Then, according to Definition 2 and (19), we have

LV1 = z3
1𝜁

[

x2 + f1 − ẏd − e1(t)
𝜓̇(t)
𝜓(t)

]

+ 3
2

z2
1𝜁

2gT
1 g1 − ̃𝜽

T
1Γ−1

1
̇
̂𝜽1. (21)

By using Lemma 1, the following inequality holds

3
2

z2
1𝜁

2gT
1 g1 ≤

3
4l2

1
z4

1𝜁
4‖g1‖

4 + 3
4

l2
1, (22)

where l1 > 0 is a constant.
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WANG et al. 7

Substituting (22) into (21), one has

LV1 ≤ z3
1𝜁

[

x2 + f1 − ẏd − e1(t)
𝜓̇(t)
𝜓(t)

]

+ 3
4l2

1
z4

1𝜁
4‖g1‖

4 + 3
4

l2
1 − ̃𝜽

T
1Γ−1

1
̇
̂𝜽1

≤ z3
1𝜁x2 + z3

1f 1 −
3
4

z4
1 +

3
4

l2
1 − ̃𝜽

T
1Γ−1

1
̇
̂𝜽1, (23)

where f 1 = 𝜁
[

f1 − ẏd − e1(t) 𝜓̇(t)
𝜓(t)

]
+ 3

4
z1 + 3

4l2
1
z1𝜁

4‖g1‖
4.

It is worth noting that f 1 contains unknown nonlinear functions, which cannot be directly used to design the
controller. According to Lemma 5, for any given 𝜀1 > 0, there exists a 𝜽T

1 Pm1(Z1), such that

f 1 = 𝜽
T
1 Pm1(Z1) + 𝛿1(Z1), |𝛿1(Z1)| ≤ 𝜀1, (24)

where 𝛿1(Z1) represents the approximation error, Z1 = [z1]T.
Combining (10) and (24), (23) can be reduced to the following form

LV1 ≤ z3
1𝜁z2 + z3

1𝜁𝛼1 + z3
1𝜽

T
1 Pm1(Z1) + z3

1𝛿1(Z1) −
3
4

z4
1 +

3
4

l2
1 − ̃𝜽

T
1Γ−1

1
̇
̂𝜽1. (25)

By using Lemma 1 again, we can obtain

z3
1𝜁z2 ≤

3
4

z4
1 +

1
4
𝜁

4z4
2, (26)

z3
1𝛿1(Z1) ≤ |z1|

3
𝜀1 ≤

3
4

z4
1 +

1
4
𝜀

4
1. (27)

Design the first virtual control signal 𝛼1 as follows

𝛼1 =
1
𝜁

(
−k1z1 − ̂𝜽

T
1 Pm1(Z1)

)
, (28)

where k1 >
3
4

is a design constant.
The first adaptive law ̇

̂𝜽1 is constructed in the following form

̇
̂𝜽1 = Γ1Pm1(Z1)z3

1 − Γ1𝜂1 ̂𝜽1, (29)

where 𝜂1 > 0 is a design constant.
By substituting (26)–(29) into (25), the following inequality is easily established

LV1 ≤ −
(

k1 −
3
4

)
z4

1 +
1
4
𝜁

4z4
2 +

1
4
𝜀

4
1 +

3
4

l2
1 + 𝜂1 ̃𝜽

T
1 ̂𝜽1. (30)

Step 2: Based on (1) and (10), we have

dz2 = (x3 + f2 − L𝛼1)dt +
(

g2 −
𝜕𝛼1

𝜕x1
g1

)T

d𝜔, (31)

where L𝛼1 =
𝜕𝛼1
𝜕x1
(x2 + f1) +

∑1
k=0

𝜕𝛼1

𝜕y(k)d

y(k+1)
d + 𝜕𝛼1

𝜕
̂𝜽1

̇
̂𝜽1 + 1

2
𝜕

2
𝛼1

𝜕x2
1

gT
1 g1.

Consider the second Lyapunov function candidate as follows

V2 = V1 +
1
4

z4
2 +

1
2
̃𝜽

T
2Γ−1

2
̃𝜽2, (32)

where 𝜽2 denotes the weight vector of MTN and ̂𝜽2 denotes the estimation of 𝜽2. ̃𝜽2 = 𝜽2 − ̂𝜽2 denotes the parameter error
vector, and Γ2 = ΓT

2 > 0 is a constant matrix.
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8 WANG et al.

Then, according to Definition 2 and (31), we have

LV2 = LV1 + z3
2(x3 + f2 − L𝛼1) +

3
2

z2
2

(

g2 −
𝜕𝛼1

𝜕x1
g1

)T(

g2 −
𝜕𝛼1

𝜕x1
g1

)

− ̃𝜽
T
2Γ−1

2
̇
̂𝜽2. (33)

Similar to step 1, according to Lemma 1, the following inequality holds

3
2

z2
2

(

g2 −
𝜕𝛼1

𝜕x1
g1

)T(

g2 −
𝜕𝛼1

𝜕x1
g1

)

≤
3

4l2
2

z4
2
‖
‖
‖
‖

g2 −
𝜕𝛼1

𝜕x1
g1

‖
‖
‖
‖

4
+ 3

4
l2
2, (34)

where l2 > 0 is a constant.
According to (30) and (34), (33) can be converted into the following form

LV2 ≤ −
(

k1 −
3
4

)
z4

1 +
1
4
𝜀

4
1 +

3
4

2∑

j=1
l2
j + 𝜂1 ̃𝜽

T
1 ̂𝜽1 + z3

2

(
x3 + f 2

)
− 1

2
z4

2 − ̃𝜽
T
2Γ−1

2
̇
̂𝜽2, (35)

where f 2 = f2 − L𝛼1 + 3
4l2

2
z2

‖
‖
‖

g2 −
𝜕𝛼1
𝜕x1

g1
‖
‖
‖

4
+ 1

2
z2 + 1

4
𝜁

4z2.

Similarly, f 2 cannot be directly used in the design of the controller. According to Lemma 5, 𝜽T
2 Pm2(Z2) is used to

approximate f 2. Specifically, for any given 𝜀2 > 0, the following inequality holds

f 2 = 𝜽
T
2 Pm2(Z2) + 𝛿2(Z2), |𝛿2(Z2)| ≤ 𝜀2, (36)

where 𝛿2(Z2) represents the approximation error, Z2 = [z1, z2]T.
Combining (10) and (35), (36), we have

LV2 ≤ −
(

k1 −
3
4

)
z4

1 +
1
4
𝜀

4
1 +

3
4

2∑

j=1
l2
j + 𝜂1 ̃𝜽

T
1 ̂𝜽1 + z3

2(z3 + 𝛼2)

+ z3
2𝜽

T
2 Pm2(Z2) + z3

2𝛿2(Z2) −
1
2

z4
2 − ̃𝜽

T
2Γ−1

2
̇
̂𝜽2. (37)

The second virtual control signal 𝛼2 and the adaptive law ̇
̂𝜽2 are constructed as follows

𝛼2 = −k2z2 − ̂𝜽
T
2 Pm2(Z2), (38)

̇
̂𝜽2 = Γ2Pm2(Z2)z3

2 − Γ2𝜂2 ̂𝜽2, (39)

where k2 > 1 and 𝜂2 > 0 are design constants.
By quoting Lemma 1 and substituting (38) and (39) into (37), the following inequality is obtained

LV2 ≤ −
(

k1 −
3
4

)
z4

1 − (k2 − 1)z4
2 +

1
4

2∑

j=1
𝜀

4
j +

3
4

2∑

j=1
l2
j +

2∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j +

1
4

z4
3. (40)

Step i (3 ≤ i ≤ n − 1): Similar to step 2, from (1) to (10), we have

dzi = (xi+1 + fi − L𝛼i−1)dt +

(

gi −
i−1∑

k=1

𝜕𝛼i−1

𝜕xk
gk

)T

d𝜔, (41)

where L𝛼i−1 =
∑i−1

k=1
𝜕𝛼i−1
𝜕xk
(xk+1 + fk) +

∑i−1
k=0

𝜕𝛼i−1

𝜕y(k)d

y(k+1)
d + 𝜕𝛼i−1

𝜕
̂𝜽i−1

̇
̂𝜽i−1 + 1

2

∑i−1
p,q=1

𝜕
2
𝛼i−1

𝜕xp𝜕xq
gT

p gq.
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WANG et al. 9

Consider the i-th Lyapunov function candidate as follows

Vi = Vi−1 +
1
4

z4
i +

1
2
̃𝜽

T
i Γ−1

i
̃𝜽i, (42)

where 𝜽i denotes the weight vector of MTN and ̂𝜽i denotes the estimation of 𝜽i. ̃𝜽i = 𝜽i − ̂𝜽i denotes the parameter error
vector, and Γi = ΓT

i > 0 is a constant matrix.
Then, according to Definition 2 and (41), we have

LVi = LVi−1 + z3
i (xi+1 + fi − L𝛼i−1) − ̃𝜽

T
i Γ−1

i
̇
̂𝜽i

+ 3
2

z2
i

(

gi −
i−1∑

k=1

𝜕𝛼i−1

𝜕xk
gk

)T(

gi −
i−1∑

k=1

𝜕𝛼i−1

𝜕xk
gk

)

. (43)

Based on Lemma 1, the following inequality holds

3
2

z2
i

(

gi −
i−1∑

k=1

𝜕𝛼i−1

𝜕xk
gk

)T(

gi −
i−1∑

k=1

𝜕𝛼i−1

𝜕xk
gk

)

≤
3

4l2
i

z4
i

‖
‖
‖
‖
‖
‖

gi −
i−1∑

k=1

𝜕𝛼i−1

𝜕xk
gk

‖
‖
‖
‖
‖
‖

4

+ 3
4

l2
i , (44)

where li > 0 is a constant.
Similar to step 2, substituting (44) into (43), one has

LVi ≤ −
(

k1 −
3
4

)
z4

1 −
i−1∑

j=2

(
kj − 1

)
z4

j +
3
4

i∑

j=1
l2
j + z3

i

(
xi+1 + f i

)

− 1
2

z4
i − ̃𝜽

T
i Γ−1

i
̇
̂𝜽i +

i−1∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j +

1
4

i−1∑

j=1
𝜀

4
j , (45)

where f i = fi − L𝛼i−1 + 3
4l2

i
zi

‖
‖
‖

gi −
∑i−1

k=1
𝜕𝛼i−1
𝜕xk

gk
‖
‖
‖

4
+ 3

4
zi.

Similarly, f i cannot be directly used in the design of the controller. According to Lemma 5, 𝜽T
i Pmi(Zi) is used to

approximate f i. Specifically, for any given 𝜀i > 0, we have

f i = 𝜽
T
i Pmi(Zi) + 𝛿i(Zi), |𝛿i(Zi)| ≤ 𝜀i, (46)

where 𝛿i(Zi) represents the approximation error, Zi = [z1, … , zi]T.
Then, the construction of the virtual control signal 𝛼i and the adaptive law ̇

̂𝜽i are constructed as follows

𝛼i = −kizi − ̂𝜽
T
i Pmi(Zi), (47)

̇
̂𝜽i = ΓiPmi(Zi)z3

i − Γi𝜂i ̂𝜽i, (48)

where ki > 1 and 𝜂i > 0 are design constants.
By substituting (46)–(48) into (45) and quoting Lemma 1, the following inequality is obtained

LVi ≤ −
(

k1 −
3
4

)
z4

1 −
i∑

j=2

(
kj − 1

)
z4

j +
1
4

i∑

j=1
𝜀

4
j +

3
4

i∑

j=1
l2
j +

1
4

z4
i+1 +

i∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j. (49)

Step n: Similar to step i, from (1) to (10), we have

dzn = (u + fn − L𝛼n−1)dt +

(

gn −
n−1∑

k=1

𝜕𝛼n−1

𝜕xk
gk

)T

d𝜔, (50)

where L𝛼n−1 =
∑n−1

k=1
𝜕𝛼n−1
𝜕xk

(xk+1 + fk) +
∑n−1

k=0
𝜕𝛼n−1

𝜕y(k)d

y(k+1)
d + 𝜕𝛼n−1

𝜕
̂𝜽n−1

̇
̂𝜽n−1 + 1

2

∑n−1
p,q=1

𝜕
2
𝛼n−1

𝜕xp𝜕xq
gT

p gq.
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10 WANG et al.

Consider the n-th Lyapunov function candidate as follows

Vn = Vn−1 +
1
4

z4
n +

1
2
̃𝜽

T
nΓ−1

n ̃𝜽n, (51)

where 𝜽n denotes the weight vector of MTN and ̂𝜽n denotes the estimation of 𝜽n. ̃𝜽n = 𝜽n − ̂𝜽n denotes the parameter
error vector, and Γn = ΓT

n > 0 is a constant matrix.
Then, according to Definition 2 and (50), we have

LVn = LVn−1 + z3
n(u + fn − L𝛼n−1) − ̃𝜽

T
nΓ−1

n
̇
̂𝜽n

+ 3
2

z2
n

(

gn −
n−1∑

k=1

𝜕𝛼n−1

𝜕xk
gk

)T(

gn −
n−1∑

k=1

𝜕𝛼n−1

𝜕xk
gk

)

. (52)

With the aid of Lemma 1, the following inequality holds

3
2

z2
n

(

gn −
n−1∑

k=1

𝜕𝛼n−1

𝜕xk
gk

)T(

gn −
n−1∑

k=1

𝜕𝛼n−1

𝜕xk
gk

)

≤
3

4l2
n

z4
n

‖
‖
‖
‖
‖
‖

gn −
n−1∑

k=1

𝜕𝛼n−1

𝜕xk
gk

‖
‖
‖
‖
‖
‖

4

+ 3
4

l2
n, (53)

where ln > 0 is a constant.
Substituting (53) into (52), one has

LVn ≤ −
(

k1 −
3
4

)
z4

1 −
n−1∑

j=2

(
kj − 1

)
z4

j +
3
4

n∑

j=1
l2
j + z3

n

(
u + f n

)

+ 1
4

z4
n − ̃𝜽

T
nΓ−1

n
̇
̂𝜽n +

n−1∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j +

1
4

n−1∑

j=1
𝜀

4
j , (54)

where f n = fn − L𝛼n−1 + 3
4l2

n
zn

‖
‖
‖

gn −
∑n−1

k=1
𝜕𝛼n−1
𝜕xk

gk
‖
‖
‖

4
.

Since f n contains unknown functions, f n cannot be directly used in the design of the controller. According to Lemma 5,
for any given 𝜀n > 0, 𝜽T

nPmn(Zn) is used to approximate f n as follows

f n = 𝜽
T
nPmn(Zn) + 𝛿n(Zn), |𝛿n(Zn)| ≤ 𝜀n, (55)

where 𝛿n(Zn) represents the approximation error, Zn = [z1, … , zn]T.
Similar to step i, by substituting (55) into (54) and quoting Lemma 1, we can obtain

LVn ≤ −
(

k1 −
3
4

)
z4

1 −
n−1∑

j=2

(
kj − 1

)
z4

j +
1
4

n∑

j=1
𝜀

4
j +

3
4

n∑

j=1
l2
j + z3

nu

+ z3
n𝜽

T
nPmn(Zn) + z4

n − ̃𝜽
T
nΓ−1

n
̇
̂𝜽n +

n−1∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j. (56)

Based on the above analysis, the event-triggered control strategy is designed as follows

v(t) = −(1 + 𝜆)
[

𝛼n tanh
(

z3
n𝛼n

𝜌

)

+m′ tanh
(

z3
nm′

𝜌

)]

, (57)

𝛼n = −knzn − ̂𝜽
T
nPmn(Zn), (58)

̇
̂𝜽n = ΓnPmn(Zn)z3

n − Γn𝜂n ̂𝜽n, (59)
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WANG et al. 11

u(t) = v(tk),∀t ∈ [tk, tk+1), (60)

tk+1 = inf {t ∈ R||e(t)| ≥ 𝜆|u(t)| +m}, e(t) = v(t) − u(t), (61)

where 0 < 𝜆 < 1, m > 0, m′
>

m
1−𝜆

, 𝜂n > 0, kn > 1 and 𝜌 are positive design constants, tk
(

k ∈ Z+
)

represents the controller
update time.

According to (60) and (61), for ∀t ∈ [tk, tk+1), one has

v(t) = [1 + w1(t)𝜆]u(t) + w2(t)m, (62)

where w1(t) and w2(t) are time-varying parameters with |w1(t)| ≤ 1 and |w2(t)| ≤ 1.
Considering the definition and property of the function tanh(⋅), it is easy to know that ∀𝜄 ∈ R, 𝜁 > 0, −𝜄 tanh(𝜄∕𝜁) ≤

0. Therefore, based on 𝜌 > 0 and 0 < 𝜆 < 1, we can conclude z3
nv(t) = (1 + 𝜆)

[
−𝛼nz3

n tanh
(

z3
n𝛼n

𝜌

)
−m′z3

n tanh
(

z3
nm′

𝜌

)]
≤ 0.

Furthermore, taking |w1(t)| ≤ 1 and |w2(t)| ≤ 1 into account, the following two inequalities hold

z3
nv(t)

1 + w1(t)𝜆
≤

z3
nv(t)

1 + 𝜆
, (63)

−
z3

nw2(t)m
1 + w1(t)𝜆

≤

|
|
|
|
|

z3
nm

1 − 𝜆

|
|
|
|
|
. (64)

According to m′
>

m
1−𝜆

, we have −|
|m′z3

n
|
| +

|
|
|
|

z3
nm

1−𝜆

|
|
|
|
< 0. Then, based on (57)–(64) and Lemma 2, one has

z3
nu =

z3
nv(t)

1 + w1(t)𝜆
−

z3
nw2(t)m

1 + w1(t)𝜆

≤ −𝛼nz3
n tanh

(
z3

n𝛼n

𝜌

)

−m′z3
n tanh

(
z3

nm′

𝜌

)

+
|
|
|
|
|

z3
nm

1 − 𝜆

|
|
|
|
|

≤
|
|
|
𝛼nz3

n
|
|
|
− 𝛼nz3

n tanh
(

z3
n𝛼n

𝜌

)

+ |
|
|
m′z3

n
|
|
|
−m′z3

n tanh
(

z3
nm′

𝜌

)

+ 𝛼nz3
n −

|
|
|
m′z3

n
|
|
|
+

|
|
|
|
|

z3
nm

1 − 𝜆

|
|
|
|
|

≤ 0.2785𝜌 + 0.2785𝜌 + 𝛼nz3
n

≤ 0.557𝜌 + 𝛼nz3
n. (65)

Substituting (58), (59) and (65) into (56), the following inequality holds

LVn ≤ −
(

k1 −
3
4

)
z4

1 −
n∑

j=2

(
kj − 1

)
z4

j +
1
4

n∑

j=1
𝜀

4
j +

3
4

n∑

j=1
l2
j + 0.557𝜌 +

n∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j. (66)

Then, by quoting Lemma 1, we have

n∑

j=1
𝜂j ̃𝜽

T
j ̂𝜽j ≤ −

n∑

j=1

𝜂j

2𝜆max

(
Γ−1

j

) ̃𝜽
T
j Γ−1

j
̃𝜽j +

1
2

n∑

j=1
𝜂j‖‖𝜽j‖‖

2
. (67)

Substituting (67) into (66), we can obtain

LVn ≤ −
n∑

j=1
cjz4

j −
1
2

n∑

j=1
𝜂j ̃𝜽

T
j Γ−1

j
̃𝜽j +

1
4

n∑

j=1
𝜀

4
j +

3
4

n∑

j=1
l2
j +

1
2

n∑

j=1
𝜂j‖‖𝜽j‖‖

2 + 0.557𝜌, (68)

where c1 = k1 − 3
4
, cj = kj − 1(j = 2, 3, … ,n), 𝜂j = min{(𝜂j∕(𝜆max(Γ−1

j )))|j = 1, 2, … ,n}.
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12 WANG et al.

3.2 Stability analysis

The stability analysis of the controlled system (1) is presented by the following theorem.

Theorem 1. Under Assumption 1, considering the controlled system (1) with the predetermined performance
(5), for any initial values e1(0) satisfying (5), there exists a control strategy composed by the virtual control sig-
nals (28), (38), (47) and (58), the adaptive laws (29), (39), (48) and (59), the adaptive controller (57) with the
event-triggered conditions (60) and (61), such that:

(1) all the closed-loop signals are bounded on [0,+∞) in probability.
(2) the tracking error e1 converges to a small residual set of zero with performance constraint (5).
(3) the Zeno behavior is avoided successfully.

Proof. In the first place, we prove that all signals of the closed-loop system (1) are bounded in probability.
The whole Lyapunov function candidate V is constructed as

V =
n∑

k=1

1
4

z4
k +

n∑

k=1

1
2
̃𝜽

T
kΓ−1

k
̃𝜽k. (69)

From (68) and (69), we have

LV ≤ −a0V + b0. (70)

where a0 = min
{

4cj, 𝜂j|j = 1, 2, … ,n
}

, and b0 = 1
4

∑n
j=1 𝜀

4
j +

3
4

∑n
j=1 l2

j + 0.557𝜉 + 1
2

∑n
j=1 𝜂j‖‖𝜽j‖‖

2.
According to Lemma 4 and (70), we can conclude that V is bounded in probability. Then, taking expecta-

tions on both sides of (70) and multiplying it by ea0t, one has d
(

ea0tE(V)
)
≤ b0ea0t. Furthermore, integrating it

on [0, t] as follows

E[V] ≤ E(V(0))e−a0t + b0

a0
≤ E(V(0)) + b0

a0
. (71)

From (69) and (71), the following two inequalities hold

E[|zk|] ≤ 4

√

E(V(0)) + b0

a0
, (72)

E

[
|
|
|
|
|

n∑

k=1

1
2
̃𝜽

T
kΓ−1

k
̃𝜽k

|
|
|
|
|

]

≤ E(V(0)) + b0

a0
. (73)

Based on (72) and (73), we can conclude that zk and ‖
‖
̃𝜽k‖‖ are bounded in probability. It follows from (28),

(38), (47), (57), (58) and (62) that 𝛼i, u, and v are bounded in probability. Since xi = zi + 𝛼i−1, we can conclude
that xi is bounded in probability. The above analysis proves that all signals of the closed-loop system (1) are
bounded in probability.

In the second place, we prove that the tracking error converges to a small residual set of zero with
performance constraint (5).

From (70), we naturally obtain that

LV1 ≤ −a0V1 + b0. (74)

Then, multiplying both sides of (74) by ea0t and integrating it on [0, t] as follows

V1(t) ≤ a∗0 +
[
V1(0) − a∗0

]
e−a0t

, (75)

where a∗0 = b0∕a0.
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WANG et al. 13

According to (75) and (20), we can obtain limt→∞ |z1| ≤ 4
√

4a∗0. By choosing appropriate design parameters
cj, 𝜂j, 𝜀j, lj and matrix Γj, z1 can converge to a small residual set of zero. Based on the error transfor-
mation (16), we can easily conclude that the tracking error e1 can also converge to a small residual set
of zero. In practical applications, the design parameters should be chosen appropriately to meet specific
requirements.

At last, we need to prove that the proposed controller can avoid the Zeno behavior. In other words, there
exists a positive constant t∗, for ∀k ∈ Z+, such that {tk+1 − tk} ≥ t∗, where t∗ denotes the lower bound of the
minimum inter-execution interval.

From e(t) = v(t) − u(t), ∀t ∈ [tk, tk+1), we have

d|e(t)|
dt

= d
dt
(e × e)

1
2 = sign (e)ė ≤ |v̇|. (76)

Based on (57) and (58), we have the conclusion that since all terms contained in 𝛼n are bounded and have
continuous derivatives, there exists v̇ which is bounded. In other words, there must exist a constant M > 0,
such that |v̇| ≤ M. From e(tk) = 0 and limt→tk+1 e(t) = 𝜆|u(t)| +m > m, we know that the lower bound of the
inter-execution interval t∗ must satisfy t∗ ≥ m∕M > 0, so Zeno behavior cannot occur.

In summary, the proof of Theorem 1 is complete. ▪

Remark 4. Based on the above analysis, it can be seen that our control strategy has significant advantages.
In practical engineering, in order to obtain the desired tracking accuracy and convergence time, the user
must repeatedly adjust the parameters to achieve the goal, which is a time-consuming and laborious process.
However, in this paper, by introducing FTPF, tracking accuracy and convergence time are considered, and
they can be predetermined by adjusting the parameters of FTPF.

4 SIMULATION EXPERIMENT

In this section, a numerical example and a practical example are used to illustrate the effectiveness of the control strategy
proposed in this paper.

Example 1. To verify the effectiveness of the proposed control strategy, the following second-order stochastic
nonlinear system is considered:

⎧
⎪
⎨
⎪
⎩

dx1 = (x2 + 0.2x1 sin(x1))dt + 0.1x1d𝜔
dx2 =

(
u − x1 cos

(
x2

2
))

dt + 0.1x2d𝜔
y = x1

(77)

with the initial state satisfies x1(0) = x2(0) = 0, the reference trajectory is selected as yd = sin(t).

In the simulation, the control structure is chosen in the same way as Theorem 1. The parameters of FTPF𝜓(t) are taken
as 𝜓1 = 0.8, 𝜓2 = 0.03, Tc = 5. The parameters of control strategy are designed as 𝜍1 = 8.1, 𝜍2 = 8.1, 𝜆 = 0.01, 𝜌 = 0.001,
m′ = 3. The parameters of MTN are selected in two cases, (i) case 1: k1 = 9, k2 = 100, 𝜂1 = 12, 𝜂2 = 20; (ii) case 2: k1 = 1,
k2 = 45, 𝜂1 = 11, 𝜂2 = 10. The simulation results are shown in Figures 2–6.

Figure 2 illustrates that the system output y can track the desired reference signal yd closely under two cases, which
indicates that the choice of design parameters may affect the initial tracking performance, but not affect the final tracking
performance. The responses of tracking error e1(t) in two cases are shown in Figure 3, it can be seen that the tracking error
can converge to the prescribed performance constraint. Figure 4 shows the boundedness of u and v in case 2. Figure 5
shows the response of the state variable x2 in case 2. Figure 6 represents the time between two adjacent events, which
indicates that Zeno behavior does not occur.

Example 2. In order to verify the applicability of the proposed control strategy, a class of single link robot
arm dynamics system is considered. According to the work of Reference 51, its system can be represented as
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14 WANG et al.

F I G U R E 2 The responses of yd and y of Example 1 in two cases.

F I G U R E 3 The responses of e1 with performance constraint of Example 1 in two cases.

F I G U R E 4 The responses of v(t) and u(t) of Example 1 in case 2.
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WANG et al. 15

F I G U R E 5 The response of state variable x2 of Example 1 in case 2.

F I G U R E 6 The response of inter-execution interval of Example 1 in case 2.

a second-order stochastic nonlinear system of the following form

⎧
⎪
⎨
⎪
⎩

dx1 = x2dt
dx2 = (u − 5 sin(x1))dt + 0.5x2 sin(x1)d𝜔
y = x1

(78)

where the initial condition is x1(0) = x2(0) = 0.

In the simulation, the reference trajectory is selected as yd = sin(t). The control structure is chosen in the same way
as Theorem 1. The tracking error e1 satisfies the predefined performance constraint: −2.7𝜓(t) < e1(t) < 2.7𝜓(t), and the
design parameters take the following values: 𝜓1 = 0.8, 𝜓2 = 0.03, Tc = 5, 𝜆 = 0.01, 𝜌 = 0.001, m′ = 3, k1 = 1, k2 = 45. The
simulation results of the system (78) are shown in Figures 7–11.

Figure 7 displays the responses of the system output y and the reference signal yd, which shows that the sat-
isfying tracking performance can be achieved. Figure 8 indicates that the tracking error e1 converges to a small
residual set of zero with finite-time performance constraint. Figures 9 and 10 show the responses of v(t), u(t) and
x2, respectively. Figure 11 displays the response of inter-execution interval, which indicates that Zeno behavior has
been avoided successfully. The simulation results further verify the feasibility of the control strategy proposed in this
paper.
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16 WANG et al.

F I G U R E 7 The responses of yd and y of Example 2.

F I G U R E 8 The response of e1 with performance constraint of Example 2.

F I G U R E 9 The responses of v(t) and u(t) of Example 2.
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WANG et al. 17

F I G U R E 10 The response of state variable x2 of Example 2.

F I G U R E 11 The response of inter-execution interval of Example 2.

Remark 5. The aforementioned stability analysis and simulations show that the control performance of sys-
tem can be influenced by the design parameters chosen. The tracking performance and convergence speed
can be enhanced by selecting the optimal design parameters. Therefore, in order to more successfully meet
the specific control objectives, the real engineering system should be carefully adjusted to select the most
appropriate parameters.

5 CONCLUSION

In this paper, the problem of predetermined finite-time performance control has been investigated for strict-feedback
stochastic nonlinear systems, in which an easy-to-implement FTPF has been introduced to describe the predefined track-
ing performance. The original constrained tracking error has been transformed into an equivalent unconstrained variable
by means of a transformation function. Moreover, an event-triggered adaptive tracking control strategy has been proposed
with the aid of adaptive backstepping method and MTN. Based on the above technologies, this control strategy has guar-
anteed that all signals of the closed-loop system were bounded in probability. It also has achieved predetermined tracking
performance in a finite time and saved communication resources while avoiding Zeno behavior. Finally, simulation results
have shown the effectiveness of the proposed control strategy.
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